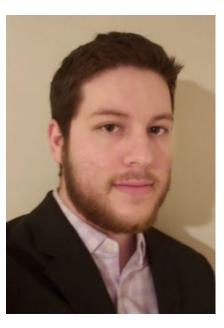

Senior Design Proposal

P.A.L.M.


Personal Automated Lawn Mower

BRIAN DARLING AND GABRIEL DE LA TORRE SUPERVISING ADVISOR: PROFESSOR ALI NOTASH

HTTPS://PALMMOWER.COM/

About Us

Gabriel De La Torre

- Planning to graduate from Valencia College July 2021 with a B.S. in Electrical and Computer Engineering Tech, Computer Systems Concentration
- A.S. in Electrical Engineering
 Tech, Electronics
 Concentration

Brian Darling

- Planning to graduate from Valencia
 College July 2021 with a B.S. in
 Electrical and Computer Engineering
 Tech, Electronics Systems
 Concentration
- A.S. in Electrical Engineering Tech,
 Electronics Concentration and Lasers
 and Photonics Concentration
- Experienced Manufacturing Engineer and Process Description Writer for PCBAs and electronic assemblies

Overview of Presentation

- Motivation
- Proposed Project
- Block Diagram
- Similar Products
- Goals and D.E.R.
- Engineering Specifications
- Components
- Power Budget
- Proposed Budget
- Timeline
- Health and Safety
- Summary
- References

Motivation


- Lawn maintenance can be time consuming and exhausting, especially for a highly active family or those with health conditions.
- A fully automated lawn mower that can maintain the yard for the user can help time restricted families maintain their lawns and keep them out of the brutal summer heat.

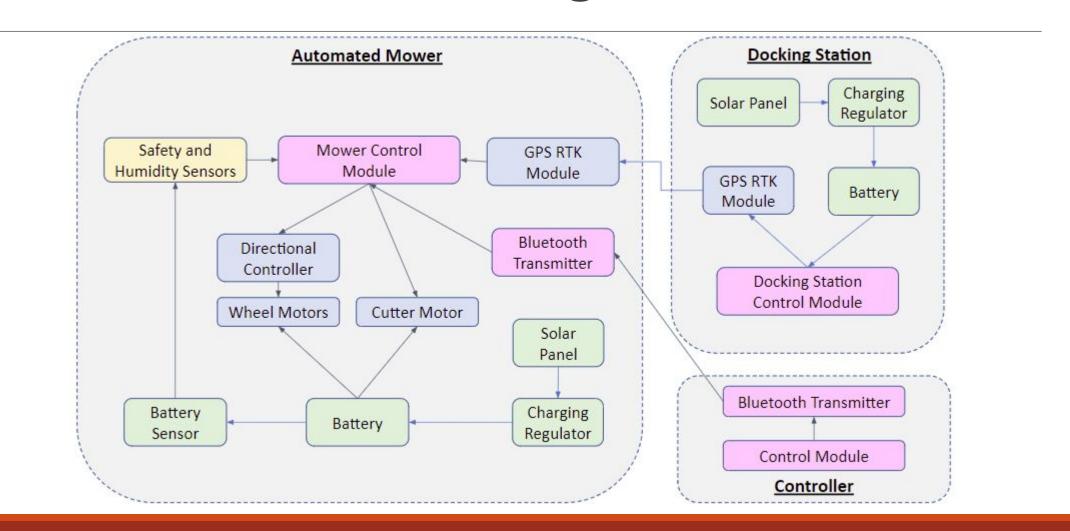
Proposed Project

The P.A.L.M. will be a fully automated lawn mower system that will cut the grass on autopilot with the users preferred cutting consistency.

Features:

- Hands Free Mowing
- GPS Guided
- Solar Powered
- Object Avoidance
- Rain Detection

Similar Products



Similar Products

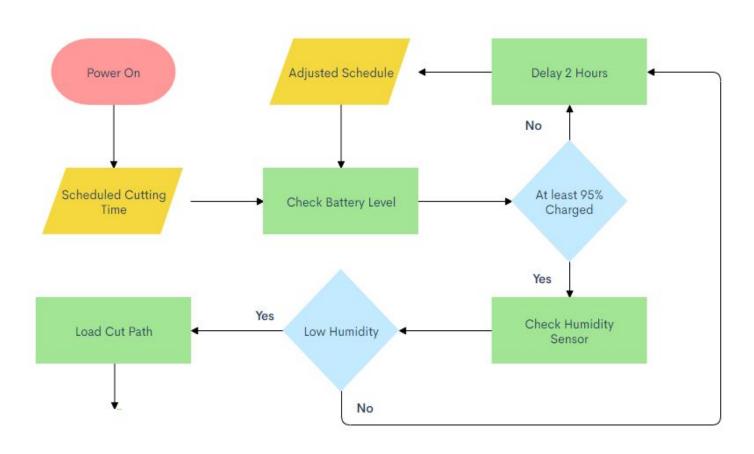
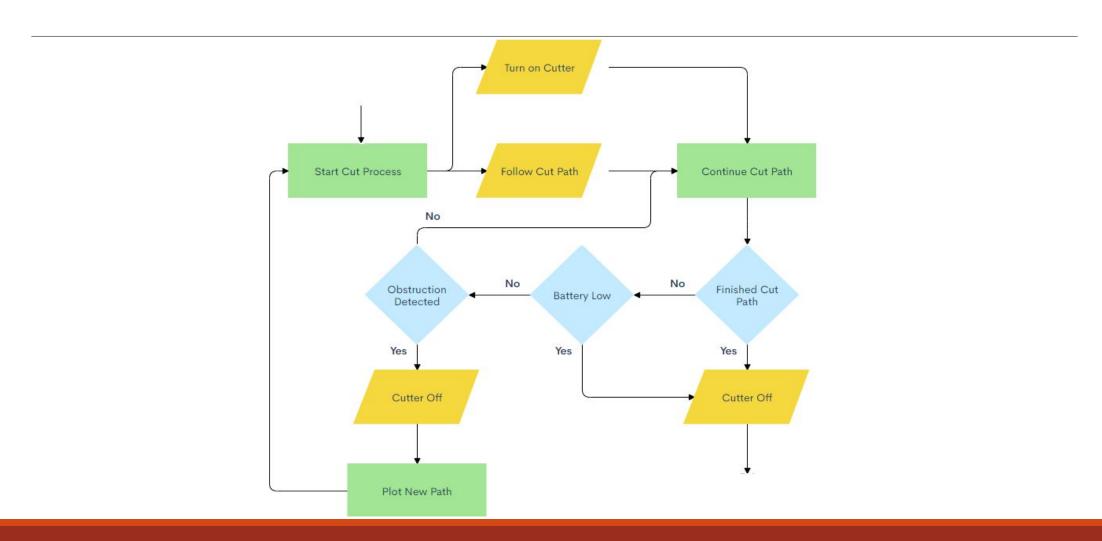
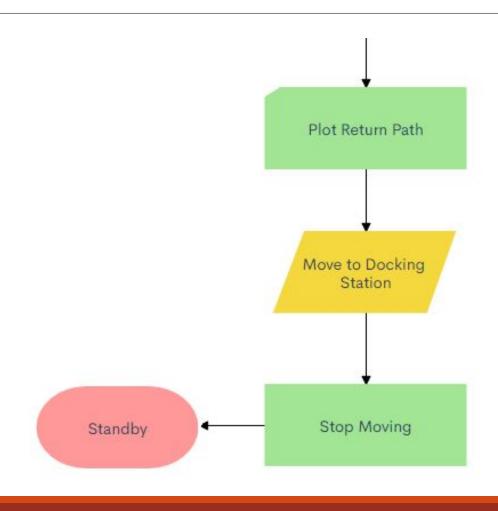

- Husqvarna Mowers
- MowBot
- MowRo

Image from https://www.gizmow.com/how-it-works/

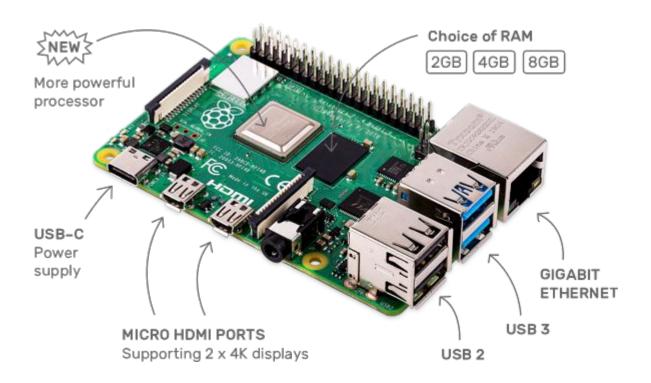

Block Diagram


Flow Chart

Flow Chart

Flow Chart

Goals and Design Engineering Requirements (DER)


Level	Requirements	Verifications and Success Criteria Tests/Trials		
High	 The user shall be able to teach the mower which sections of the lawn to mow. The mower shall be able to successfully mow a predetermined section of the lawn without further help from the user. The mower shall actively charge by using the attached solar panel to extend battery life. The mower shall be able to return to the docking station once it has done mowing. 	 The controller interface will verify and display lawn borders. Once the lawn borders are created and paths created, mower will follow a predetermined path. Microcontroller will monitor the battery source and pause mowing when power levels are too low. Once the mower has completed cutting or needs to stop, it will return to the docking station. 		
Mid	 The mower shall be able to automatically avoid obstacles in the yard using sensors. The mower shall remember the mowing path for future use. 	 The mower will utilize sensors and move around the object(s) in its path. The mower will follow the same repeatable path each iteration. 		
Low	The mowers power source shall provide at least 45 minutes of continuous mow time.	Battery tests will be performed both in direct sunlight and in the shade to determine potential battery life.		

Design Engineering Specifications (DES)

Part	Specific Component	Engineering Specification	Justification & Verification
Micro Controller	Raspberry Pi 4	Must be able run off a 12V DC power source	Justification:
		Controls motor and directional controls to determine where to move and what is left to cut.	Needs to be able to apply custom code and respond to GPS, sensor, and pre-mapped paths. Controller also must be able to monitor speed, direction, and cutter speeds.
		Must be able to detect at least 3 safety and detection sensors.	Verification: Controller will verify gps and sensors are active. If pre-mapped path is not created a new path will be generated by the code or user
		Must be able to use a GPS and compass antennas to determine global position.	input.

https://palmmower.com/senior-design-proposal/proposal-engineering-requirements/

Microcontroller

Raspberry Pi 4

- Python Compatible
- Multiple Inputs and Outputs
- Up to 8 GB of RAM
- 3 to 5 volts input
- Bluetooth connectivity

GPS RTK Module

SimpleRTK2B

- Raspberry Pi Compatible
- Accuracy between 3cm and 1cm
- Allows for Accurate Pathing
- Max Range of 20km (with correct antenna modules)

Solar Panels and Battery Packs

Flexible 10W 12V Solar Panel

- Light Weight
- Low Cost
- Can be Angled Around Bends
- Lower Profile

12.8V 6Ah Lithium-Iron Battery

- Light Weight
- Low Profile
- Can be Overcharged
- More than 2000 Cycles

Cutter Motor

775 Motor

- 9 to 12 volt power source
- Sturdy Construction
- Spins up to 12,000 RPM

Cutting Blade

- Light Weight
- Low maintenance
- Easily Removed

Controller

Handheld Touch Screen Device

- Bluetooth Connectivity
- Can remotely control the mower
- Modular

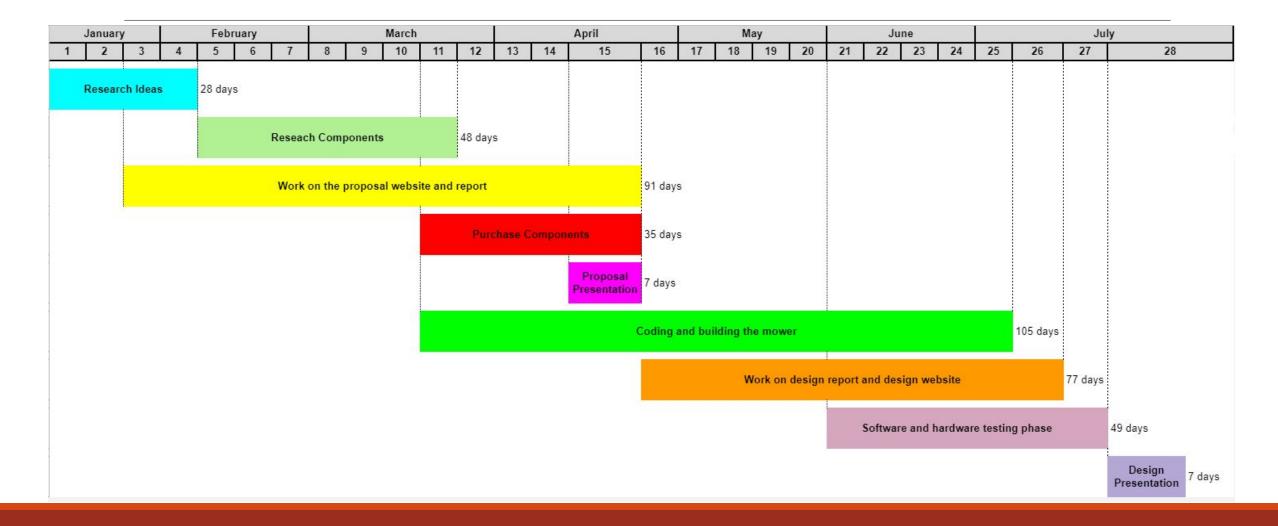
Mower Chassis

Modified Smart Tank Chassis

- Aluminum Construction
- Can carry up to 15 lbs (7kgs)
- Tank Treads for all terrain movement
- Can climb up to 30 degree inclines

Widening modification applied to provide an extra 2" of cutting space.

Power Budget


Mower						
Part	Description	Qty	Current (A)	Voltage (V)	Power (W)	Extended Power (W)
Control Module	Raspberry Pi	1	3.00	5.10	15.30	15.30
Drive Motor	Robot Smart Car Motor	2	1.20	9.00	10.80	21.60
Cutter Motor	775 Motor	1	10.00	12.00	120.00	120.00
Radio Antenna	XBee X2C	1	4.00E-02	3.30	0.13	0.13
GPS Module	simpleRTK2B	1	1.80E-01	3.30	0.60	0.60
Humidity sensors	Gowoops DHT22 Sensor	1	2.50E-03	5.00	0.01	0.01
	Total Power (W)				157.64	

Docking Station						
Part	Description	Qty	Current (A)	Voltage (V)	Power (W)	Extended Power (W)
Control Module	Raspberry Pi	1	3.00	5.10	15.30	15.30
Radio Antenna	XBee X2C	1	4.00E-02	3.30	0.13	0.13
GPS Module	simpleRTK2B	1	1.80E-01	3.30	0.60	0.60
d d		•		Total Power (W)		16.03

Proposed Budget

Description	Qty	Price	Total price
Raspberry pi 4	2	\$61.88	\$123.76
Car Kit	1	\$79.00	\$79.00
Solar Panels	2	\$25.99	\$51.98
Cutting Blade	1	\$5.68	\$5.68
Docking Battery	1	\$21.99	\$21.99
Mower Battery	1	\$32.99	\$32.99
Power Converter	2	\$14.99	\$29.98
Humidity Sensors	1	\$11.98	\$11.98
Push Button	2	\$7.99	\$15.98
3D Printed Parts	3	\$10.00	\$30.00
Blade Motor	1	\$29.95	\$29.95
RTK Modules	2	\$325.00	\$650.00
GPS Module	1	\$18.59	\$18.59
Total	20	\$613.04	\$1,111.04

Timeline

Health and Safety

- Device must be handled properly to avoid accidental injury.
- Blade Shield protects the blade from being damaged and from causing damage to others.
- Obstacle detector avoids unwanted contact for increased safety and efficiency.
- Battery must be disposed of properly to avoid environmental damage.

Summary

Features of the P.A.L.M.

- Made for Hands Free Mowing
- GPS Guided
- Solar Powered
- Avoids Obstacles

References

- [1] "Getting Started With Mowbot", MowBot.com [Online]. Available at: https://www.mowbot.com/how-does-it-work/ [Accessed: 05/Feb/2021].
- [2] "Automower Models", Husqvarna.com [Online]. Available at:
- https://www.husqvarna.com/ca-en/products/robotic-lawn-mowers/models/ [Accessed 05/Feb/2021].
- [3] "MowRo Easy, Safe, Fully Autonomous Lawn Mower", indiegogo.com [Online]. Available at: https://www.indiegogo.com/projects/mowro-easy-safe-fully-autonomous-lawn-mower#/ [Accessed 05/Feb/2021].
- [4] "simpleRTK2B: the first multiband RTK shield based on ZED-F9P", Ardusimple [Online]. Available at: https://www.kickstarter.com/projects/simplertk2b/simplertk2b-the-first-multiband-rtk-shield-based-o [Accessed 20/Mar/2021].
- [5] "What is GPS RTK?", Nathan Seidle, [Online] Available at: https://learn.sparkfun.com/tutorials/what-is-gps-rtk/all [Accessed 20/Mar/2021].

Q&A